量子力学考研真题精解精析50题
1当前冷原子物理研究非常活跃,在实验中,粒子常常是被束缚在谐振子势中,因此其哈密顿量为
。假设粒子间有相互作用
,其中
分别代表粒子1和粒子2的自旋,参数J>0。
(1)如果把两个自旋1/2的全同粒子放在上述势阱中,试写出基态能量和基态波函数;
(2)如果把两个自旋1的全同粒子放在上述势阱中,试写出基态能量和基态波函数。(注意:参数在不同范围内,情况会不同)
[浙江大学2014研]
【解题思路】
①研究体系处在线性谐振子势场中,有关单个体系在谐振子势中的问题,一般可以通过求解薛定谔方程得出相应的本征波函数和本征能量,确定体系的波函数,研究对象的量子状态、对其进行测量可得到的测量值的大小和几率等问题,都可以一一解决。
②研究体系内包含两个粒子,它们之间存在自旋-自旋相互作用,利用角动量的合成来解决这部分相互作用引出的相关问题。
③在两个问题中,涉及到不同自旋的粒子,即玻色子和费米子,可以通过它们满足的统计性质来决定在势场中的分布情况,从而解决要求的基态能量和波函数。
【解析】
(1)对于处在线性谐振子势中粒子的哈密顿量
由薛定谔方程
得本征能量为
本征波函数为
两粒子间有相互作用
设
因此
即
所以
因为
所以两粒子是费米子,满足费米狄拉克统计,体系的总波函数要求交换反对称,并且S=0或者S=1。
因为
,所以体系基态选择
,因此体系坐标部分的波函数为
满足交换对称性。
为了保证总波函数的交换反对称,所以自旋部分的波函数满足交换反对称,即
所以体系的基态波函数为
基态能量为